A Method of Bearing Fault Feature Extraction Based on Improved Wavelet Packet and Hilbert Analysis
نویسندگان
چکیده
In order to supply a gap of current resonance vibration and STFT demodulation method applied to rolling bearing fault feature extraction of city rail vehicle, a fault diagnosis method for rolling bearing is presented, which is based on the integration of improved wavelet packet, frequency energy analysis and Hilbert marginal spectrum. When faults occur in rolling bearing, the energy of the rolling bearing vibration signal would change correspondingly, while the Hilbert energy spectrum can exactly provide the energy distribution of the signal in certain frequency with the change of the time and frequency. Thus, the fault information of the rolling bearing can be extracted effectively from the improved wavelet packet and Hilbert energy spectrum. The experimental result proves that the fault characteristic extracted by improved wavelet packet and Hilbert transform is in accord with the one analyzed from theory, and the fault feature extraction method is effective. The research results provide the theoretical foundation for the extraction of fault feature in rotary machine and have important practical value.
منابع مشابه
Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform
Mechanical anomaly is a major failure type of induction motor. It is of great value to detect the resulting fault feature automatically. In this paper, an ensemble super-wavelet transform (ESW) is proposed for investigating vibration features of motor bearing faults. The ESW is put forward based on the combination of tunable Q-factor wavelet transform (TQWT) and Hilbert transform such that faul...
متن کاملWeak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features...
متن کاملRolling Bearing Failure Feature Extraction Based on Large Parameters Stochastic Resonance ⋆
Based on rolling bearing fault signal modulation model in the process of spreading, an improved method that combining Hilbert envelop extraction algorithm and large parameter setting rules in stochastic resonance (SR) is proposed for features extraction. Firstly, Hilbert transform can effectively eliminate the interference of high frequency carrier signal. Secondly, parameters setting rules in ...
متن کاملGear and Bearing Fault Detection Using Wavelet Packet and Hilbert Method via Acoustic Signals
Detection of gearing and bearing faults using vibration signals has been widely used for decades. A lot of methods of vibration signal processing for fault detection have been used, such as fast Fourier transform, Hilbert transform, wavelet and wavelet packet transform. In recent years, a new method for vibration signal processing, combining Hilbert transform and wavelet packet appeared, and ha...
متن کاملStudy Of The Fault Diagnosis Based On Wavelet And Fuzzy Neural Network For The Motor
In the fault diagnosis of the motor, the vibration signals can fully reflect the status of the motor. In this paper, on the basis of wavelet packet fault feature extraction, a new approach for motor fault diagnosis based on wavelet packet analysis and fuzzy RBF neural network was presented.The method gains the energy of characteristic channel of bearing failure vibration signals of asynchronous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JDCTA
دوره 4 شماره
صفحات -
تاریخ انتشار 2010